	Unit Test Plan

	Module ID: Red-Black Tree
	Program ID: The Puzzler – 3D Style

	1. Module Overview

	Briefly define the purpose of this module. This may require only a single phrase: i.e.: calculates overtime pay amount, calculates equipment depreciation, performs date edit validation, or determines sick pay eligibility, etc.

	Provide the Data Structure for the Red-Black Binary Search Tree.
There are exactly five properties that must be maintained while performing insert or delete operations on the red-black binary search tree:

1. Every node in the tree must have either the red or black color attribute.

2. The top root of the tree must always have the black color attribute.

3. Every leaf, which is the bottom most node of any branch, must also have the black color attribute. The leaves of the tree are also referred to as nil[T], where T refers to the entire tree and nil[T] refers to the nil node which is also known as the Sentinel of the tree.
4. If a given node in the tree has its color as red, then both of its children have their color as black.

5. For each node in the tree, all paths from the node to descendant leaves contain the same number of black color nodes.

For the sake of saving space, I will not go into great detail on what exactly comes up when you’re performing an insert or delete to maintain these five properties, suffice to say that there are three situations that must be dealt with when performing the insert, and four situations when performing a delete.

The seven methods I’ll detail a bit later in pseudo code, will provide the means to handle all of these situations. All of the operations execute proportionally to O(lg n).

	1.1 Inputs to Module

	[Provide a brief description of the inputs to the module under test.]

	Default constructor takes no arguments, and the five argument constructor will take three node references parent, left child, and right child, the key of type object as defined in C#, and the color which will be either “black” or “red.”

	1.2 Outputs from Module

	[Provide a brief description of the outputs from the module under test.]

	None, other than operations and references to itself, and meant only to persist data in the data base.

	1.3 Logic Flow Diagram

	[Provide logic flow diagram if additional clarity is required.]

	On calling RB-Insert(reference to entire tree object T, and node to insert z), RB-Insert-Fixup(reference to entire tree object T, and node to fix up z), Left-Rotate(reference to entire tree object T, and node to rotate x), as well as Right-Rotate(reference to entire tree object T, and the node to rotate y) to rebalance the tree according to the five properties of the red-black tree.
RB-Insert() calls RB-Insert-Fixup(), which further calls both Left-Rotate() and Right-Rotate().

On calling RB-Delete(reference to entire tree object T, and node to delete z), which calls Tree-Successor(node to find the successor of node x), then calls RB-Delete-Fixup(reference to entire tree object T, and node to fix up x), Left-Rotate(reference to entire tree object T, and node to rotate x), as well as Right-Rotate(reference to entire tree object T, and the node to rotate y) to rebalance the tree according to the five properties of the red-black tree.
RB-Delete() calls Tree-Successor(), which calls RB-Delete-Fixup(), which further calls both Left-Rotate() and Right-Rotate().

	2. Test Data

	(Provide a listing of test cases to be exercised to verify processing logic.)

	The test data will be color, key, left, right, and parent.
The seven methods detailed in the logic flow. spelled out in English, will be tested on a pass/fail basis based on the criteria of:
1. Insert() correctly places a fourth node into a three-node tree, and correctly rebalancing the new four-node tree.

2. Delete() correctly removes a node from a four-node tree, and correctly rebalances the tree.

3. Tree-Successor(node to look for its successor x) correctly finds the node with the next smallest key, and is greater than the key of node x.

4. Inorder-Tree-Walk(node to start accessing keys from x) correctly and in order accesses each key in the binary search red-black tree and in sorted order.

5. Tree-Search(reference to the root of the tree x, and a node whose key is k to look for) correctly finds the node with key k in the tree whose reference is x.
6. Iterative-Tree-Search(reference to the root of the tree x, and a node whose key is k to look for) correctly finds the node with key k in the tree whose reference is x, but performs the search more efficiently by “unrolling” the recursion into a while loop.

7. Tree-Minimum(subtree rooted at node x) correctly returns a reference to the minimum element in the subtree rooted at a given node x.

8. Tree-Maximum(subtree rooted at node x) correctly returns a reference to the maximum element in the subtree rooted at a given node x.

The first two tests are probably over simplified to start with (but certainly do suffice). This list will be added to if the need arises to do more detailed tests.

	2.1 Positive Test Cases

	[Representative data samples should provide a spectrum of valid field and processing values including "Syntactic" permutations that relate to any data or record format issues. Each test case should be numbered, indicate the nature of the test to be performed and the expected proper outcome.]

	My two hand-drawn test cases resembling the two in the Test Data section would correctly place the references and color data fields while doing an Insert() or a Delete(). The NUnit script should return a green P for passed.

	2.2 Negative Test Cases

	[The invalid data selection contains all of the negative test conditions associated with the module. These include numeric values outside thresholds, invalid Characters, invalid or missing header/trailer record, and invalid data structures (missing required elements, unknown elements, etc.)

	My two hand-drawn test cases resembling the two in the Test Data section what would have a problem with one or more of the reference or color data fields while doing an Insert() or a Delete(). The NUnit script should return a red F for failed.

	3. Interface Modules

	[Identify the modules that interface with this module indicating the nature of the interface: outputs data to, receives input data from, internal program interface, external program interface, etc. Identify sequencing required for subsequent string tests or sub-component integration tests.]

	There are no modules that directly interface in the way of providing input or output to this module. This module will persist the data of anything of type object in C#.

	4. Test Tools

	[Identify any tools employed to conduct unit testing. Specify any stubs or utility programs developed or used to invoke tests. Identify names and locations of these aids for future regression testing. If data supplied from unit test of coupled module, specify module relationship.]

	I will use a combination or the command line and GUI version of NUnit with NAnt to build and to test this module.

	5. Archive Plan

	[Specify how and where data is archived for use in subsequent unit tests. Define any procedures required to obtain access to data or tools used in the testing effort. The unit test plans are normally archived with the corresponding module specifications.]

	I have all the necessary tools loaded on this notebook computer, as well as the web server / desktop computer at home. The web server is also the location of the SQL database for the first phase of this project.

	6. Updates

	[Define how updates to the plan will be identified. Updates may be required due to enhancements, requirements changes, etc. The same unit test plan should be re-used with revised or appended test cases identified in the update section.]

	Updates will be performed as the need for testing changes, typically if successive tests defined here are repeatedly failing, more detailed tests will be defined. The same approach will be taken for changes.

